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Unicyclic Hückel molecular graphs with minimal energy
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The minimal energy of unicyclic Hückel molecular graphs with Kekulé structures,
i.e., unicyclic graphs with perfect matchings, of which all vertices have degrees less than
four in graph theory, is investigated. The set of these graphs is denoted by Hl

n such that
for any graph in Hl

n, n is the number of vertices of the graph and l the number of verti-
ces of the cycle contained in the graph. For a given n(n � 6), the graphs with minimal
energy of Hl

n have been discussed.
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1. Introduction

The investigation on the graphs with extremal energies is of practical
importance and theoretical interest in the subject of chemical graph theory. The
results for the extremal energy of acyclic conjugated molecules, unicyclic and
bicyclic molecular graphs, catacondensed hexagonal systems have been widely
investigated [1–9]. Conjugated molecules in chemistry may be classified into two
groups: Kekuléan and non-Kekuléan molecules, depending on whether or not
they possess Kekulé structures, i.e., perfect matchings in graph theory. As well
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known, conjugated hydrocarbon molecules considered in the Hückel molecule
orbit theory are usually represented by the carbon-atom skeleton graphs, of
which all vertices have degrees less than four. We call such molecular graphs
Hückel molecular graphs. In graph theory, the unicyclic Hückel molecular graphs
with Kekulé structures are unicyclic graphs with perfect matchings, of which
the largest degree of vertices does not exceed three. The set of these graphs is
denoted by Hl

n. For any graph in Hl
n, n is the number of vertices of the graph

and l the number of vertices of the cycle contained in the graph. We denote the
cycle by Cl. The minimal energy of Hl

n, however, has not been considered fully,
which is the objective of this paper.

Let G be a graph with n vertices and A(G) its adjacent matrix. The char-
acteristic polynomial of G is

φ(G, x) = det[xI − A(G)] =
n∑

i=0

aix
n−i , (1)

where I is the unit matrix of order n and a0, a1, . . . , an are the coefficients of
the characteristic polynomial of G. The n roots of φ(G, x) = 0 are denoted by
λ1, . . . , λn, which are the eigenvalues of the corresponding graph G. It is known
that the experimental heats due to the formation of conjugated hydrocarbons
are closely related to the total π -electron energy. The total energy of all π -elec-
trons in conjugated hydrocarbons, within the framework of HMO approximation
[10,11], can be reduced to

E(G) =
n∑

i=1

|λi |. (2)

E(G) can also be expressed as the Coulson integral formula [4]

E(G) = 1
2π

∫ +∞
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2j+1




2


 dx, (3)

where bi(G) = |ai(G)|. It can be seen from (3) that E(G) is a strictly monoto-
nously increasing function of bi(G), i � 0. Consequently, if

bi(G1) � bi(G2) (4)

holds for all i � 0, where G1 and G2 are unicyclic graphs, then

E(G1) � E(G2) (5)

and the equality in (5) is attained only if relation (4) is an equality for all i � 0
[7].

Next, formulae (4) and (5) will be employed to study the minimal energy of
Hl

n.
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2. Preliminaries

Specially, let G be a connected unicyclic graph on n vertices with perfect
matchings. It is evident that n is an even. Let m(G, k) be the number of k-match-
ings in G, where k is a positive integer and 0 � k � n/2. Obviously, m(G, 1) = n.
In addition, it is consistent to define m(G, 0) = 1. Let Q(G) = L(G) − M(G),
where L(G) is the edge set of G and M(G) the perfect matching of G. It is clear
that |M(G)| = |Q(G)| = n/2, where |M(G)| and |Q(G)| are the numbers of edges
in M(G) and Q(G) respectively. Let Ĝ be the graph induced by Q(G), that is,
Ĝ = G − M(G) − S0, where S0 is the set of singletons in G − M(G). We call Ĝ

the capped graph of G and G the original graph of Ĝ. Each k-matching � of
G can be partitioned into two parts: � = � ∪ �, where � is a matching in Ĝ

and � ⊂ M(G). On the other hand, any i-matching � of Ĝ and k − i edges �

of M(G) that are not adjacent to � form a k-matching � of G with partition
� = �

⋃
�. Thus, we have [1]

m(G, k) =
n/2∑

i=0

m(Ĝ, i) ·
(

n/2 − j

k − i

)
, (6)

where j is the number of edges in M(G) which are adjacent to i-matching �.
There is a relationship between bi(G) and m(G, k): [7]

b2k(G) = m(G, k) + 2(−1)r+1m(G − Cl, k − r) and b2k+1(G) = 0 when l = 2r

while b2k(G) = m(G, k) and

b2k+1(G) =
{

0, 2k + 1 < l

2m(G − Cl, k − r), 2k + 1 � l

when l = 2r + 1, where r is a positive integer.

3. Results

Let S
n/2
n be a graph obtained by attaching a pendant edge to each vertex of

Cn/2. For instance, S4
8 and Ŝ4

8 are shown in figure 1. In chemistry, S
n/2
n is called

radialene graph, i.e., the molecular graph of n/2 radialene. The theoretical stud-
ies on radialenes can be found in Refs. [12–15]. In particular, Gutman [12] made
some statements about the energy of S

n/2
n . Gutman [13] examined three graphic

polynomials of annulenes and radialenes. By using of generalized total π -elec-
tron energy indices, Aihara [14] elucidated two major features of radialene, i.e.,
specific stability and enhanced diamagnetism.

We denote the largest degree of vertices of G and the path with n vertices
by �(G) and Pn, respectively. Let G ∈ Hl

n hereinafter. Obviously, �(G) � 3.
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(a) (b)

Figure 1. (a) S4
8 , (b) Ŝ4

8 .

Lemma 1. [10] Let e = uv be an edge of G. Then

m(G, k) = m(G − e, k) + m(G − u − v, k − 1) for k � 1.

From lemma 1, we have lemma 2 as follows.

Lemma 2. For a given n (n � 6), we have m(G, k) � m
(
S

n/2
n , k

)
with equality

for all values of k if and only if G = S
n/2
n .

Proof. Because every vertex of G is incident with an edge in M(G) and �(G) �
3, we have �(Ĝ) � 2. Thus, Ĝ is Cl, the union of Cl and path(s), Pn/2+1, or the
union of disjoint paths whose total length is n/2. Three cases will be considered
for Ĝ as follows.
Case (i) Ĝ is Cl.

Since every vertex of Cl is saturated, obviously, G = S
n/2
n . Thus, lemma 2

holds.

Case (ii) Ĝ is the union of Cl and path(s).
Let e = uv be an edge both of Cl contained in Ĝ and of Cn/2 contained in

Ŝ
n/2

n . By lemma 1, we have

m(Ĝ, k) = m(Ĝ − e, k) + m(Ĝ − u − v, k − 1), (7)

m
(
Ŝn/2

n , k
) = m

(
Ŝ n/2

n − e, k
) + m

(
Ŝ n/2

n − u − v, k − 1
)
. (8)

Since Ĝ− e is the union of disjoint paths whose total length is n/2 − 1 and
Ŝ

n/2
n − e is Pn/2, we have

m(Ĝ − e, k) � m
(
Ŝ n/2

n − e, k
)
. (9)

The equality in (9) does not hold for all values of k since Ĝ−e has sharply more
2-matchings than Ŝ

n/2
n − e. Since Ĝ − u − v is the union of disjoint paths whose

total length is n/2 − 3 or Pn/2−2 and Ŝ
n/2

n − u − v is Pn/2−2, we have

m(Ĝ − u − v, k − 1) � m
(
Ŝn/2

n − u − v, k − 1
)
. (10)
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Substitution of (9) and (10) into (7) and (8) yields m(Ĝ, k) � m(Ŝ
n/2

n , k) with the
equality that does not hold for all values of k.

Case (iii) Ĝ is Pn/2+1 or the union of disjoint paths whose total length is n/2.
By the approach similar to Case (ii), we can get m(Ĝ, k) � m(Ŝ

n/2
n , k) with

the equality that does not hold for all values of k since Ĝ has sharply more
2-matchings than Ŝ

n/2
n .

Combining Cases (i), (ii) and (iii), we have m(Ĝ, k) � m
(
Ŝ

n/2
n , k

)
with

equality for all values of k if and only if G = S
n/2
n . Furthermore, noting that any

i-matching of Ŝ
n/2

n is adjacent to 2i edges of M
(
S

n/2
n

)
while any i-matching of

Ĝ to at most 2i edges of M(G), we have

m(G, k) =
n/2∑

i=0

m(Ĝ, i) ·
(

n/2 − j

k − i

)
�

n/2∑

i=0

m
(
Ŝ n/2

n , i
) ·

(
n/2 − 2i

k − i

)
= m

(
Sn/2

n , k
)
.

(11)

The equality in (11) holds for all values of k if and only if G = S
n/2
n . Lemma 2

has been proved.
It should be noted that h, r and j hereinafter denote positive integers. From

lemma 3, we have theorem 1 as follows.

Theorem 1. For a given n (n � 6), we consider four cases as follows: (i) n/2 = 2h+
1 and l = 2r + 1 � n/2; (ii) n/2 = 4h and l = 2r + 1; (iii) n/2 = 4h and l = 4j + 2;
(iv) n/2 = 4h + 2 and l = 4j + 2 � n/2. If any of the four cases holds, then
E(G) � E(S

n/2
n ) with equality if and only if G = S

n/2
n .

Proof. Case (i) n/2 = 2h + 1 and l = 2r + 1 � n/2.
When l = n/2, we have G = S

n/2
n since G has n vertices and every vertex of

Cl is saturated. Thus, E(G) = E
(
S

n/2
n

)
. Next, we consider l < n/2.

Since b2k

(
S

n/2
n

)
= m

(
S

n/2
n , k

)
and b2k(G) = m(G, k), from lemma 2, we

have

b2k(G) � b2k

(
Sn/2

n

)
. (12)

The equality in (12) does not hold for all values of k since G �= S
n/2
n . Since

b2k+1
(
Sn/2

n

) =
{

0, 2k + 1 < n/2

2m
(
S

n/2
n − Cn/2, k − h

)
, 2k + 1 � n/2
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and S
n/2
n − Cn/2 is n/2 isolated vertices, we have

b2k+1
(
Sn/2

n

) =
{

2, k = h

0, k �= h
. (13)

Since

b2k+1(G) =
{

0, 2k + 1 < l

2m(G − Cl, k − r), 2k + 1 � l
, (14)

we consider the case of k = h. Because every vertex of Cl is saturated, the vertices
of Cl are incident with at most l edges of M(G). It is noted that |M(G)| = n/2.
So at least n/2 − l independent edges of M(G) are contained in G − Cl as its
subgraph. We have m(G − Cl, n/2 − l) � 1. Furthermore, since l < n/2, we have
(n/2−l)−(h−r) = 1

2(n/2−l) > 0. Therefore, m(G−Cl, h−r) � m(G−Cl, n/2−l).
Obviously, m(G − Cl, h − r) � 1. Thus, we get

b2k+1(G) �
{

2, k = h

0, k �= h
. (15)

By comparing (13) and (15), we have

b2k+1(G) � b2k+1
(
Sn/2

n

)
. (16)

It follows from (12) and (16) that E(G) > E
(
S

n/2
n

)
. Finally, we have

E(G) � E
(
S

n/2
n

)
with equality if and only if G = S

n/2
n .

Case (ii) n/2 = 4h and l = 2r + 1.
Since b2k

(
S

n/2
n

)
= m

(
S

n/2
n , k

)
− 2m

(
S

n/2
n − Cn/2, k − 2h

)
and S

n/2
n − Cn/2 is

n/2 isolated vertices, we have

b2k(S
n/2
n ) =






m
(
S

n/2
n , k

)
− 2, k = 2h

m
(
S

n/2
n , k

)
, k �= 2h

. (17)

From b2k(G) = m(G, k) and lemma 2, we readily arrive at

b2k(G) � b2k

(
Sn/2

n

)
. (18)

The equality in (18) does not hold for all values of k. For example, b4h(G) >

b4h

(
S

n/2
n

)
. It is noted that

b2k+1(G) = 2m(G − Cl, k − r) > 0 = b2k+1
(
Sn/2

n

)
. (19)

The equality in (19) does not hold for all values of k. For example, b2r+1(G) >

b2r+1

(
S

n/2
n

)
. It follows from (18) and (19) that E(G) >

(
S

n/2
n

)
.

Case (iii) n/2 = 4h and l = 4j + 2.
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From b2k(G) = m(G, k)+2m(G−Cl, k −2j −1), (17) and lemma 2, we have

b2k(G) � b2k

(
Sn/2

n

)
. (20)

The equality in (20) does not hold for all values of k. For example, b4j+2(G) >

b4j+2

(
S

n/2
n

)
. It is noted that

b2k+1(G) = b2k+1
(
Sn/2

n

) = 0. (21)

It follows from (20) and (21) that E(G) > E
(
S

n/2
n

)
.

Case (iv) n/2 = 4h + 2 and l = 4j + 2 � n/2.
When l = n/2, from Case (i), we have E(G) = E

(
S

n/2
n

)
. Next, we consider

l < n/2.
Since b2k

(
S

n/2
n

)
= m(S

n/2
n , k) + 2m(S

n/2
n − Cn/2, k − 2h − 1) and S

n/2
n − Cn/2

is n/2 isolated vertices, it follows that

b2k

(
Sn/2

n

) =
{

m(S
n/2
n , k) + 2, k = 2h + 1

m(S
n/2
n , k), k �= 2h + 1

. (22)

Since b2k(G) = m(G, k) + 2m(G − Cl, k − 2j − 1), we consider the case of
k = 2h + 1. From Case (i), we have m(G − Cl, n/2 − l) � 1. Furthermore, since
l < n/2, we have (n/2 − l) − [(2h + 1) − (2j + 1)] = 1

2(n/2 − l) > 0. Therefore,
m(G − Cl, (2h + 1) − (2j + 1)) � m(G − Cl, n/2 − l). Obviously, m(G − Cl, (2h +
1) − (2j + 1)) � 1. Thus, we have

b2k(G) �
{

m(G, k) + 2, k = 2h + 1
m(G, k), k �= 2h + 1 . (23)

By comparing (22) and (23) and from lemma 2, we have

b2k(G) � b2k

(
Sn/2

n

)
. (24)

The equality in (24) does not hold for all values of k since G �= S
n/2
n . It is noted

that

b2k+1(G) = b2k+1
(
Sn/2

n

) = 0. (25)

It follows from (24) and (25) that E(G) > E
(
S

n/2
n

)
. Finally, we have

E(G) � E
(
S

n/2
n

)
with equality if and only if G = S

n/2
n .

By combining the aforementioned results, theorem 1 is proved.
Theorem 1 shows partial results for l > n/2. Next, a further discussion will

be conducted.
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Lemma 3. For a given n (n � 6), when l > n/2, Ĝ is Pn/2+1 or the union of dis-
joint paths whose total length is n/2 and there are two edges e1 and e2 of Cl

which are adjacent to 3 edges in M(G) and to at most 2 edges in Q(G).

Proof. By contradiction. If all the vertices of Cl were attached by at least one
edge, we would have n � 2l. If only one vertex of Cl were attached by no edge,
we would have n � (l − 1) + l = 2l − 1. However, l > n/2 is the prerequisite
for lemma 3. Therefore, it can be concluded that at least two vertices of Cl,
denoted by x and y, are attached by no edge. Next, we prove that x and y

should be adjacent. If x were not adjacent to y, x and its adjacent vertex z would
be matched since G ∈ Hl

n. z would be attached by a path of length 2 at least. The
analysis on y is the same as that for x. So we would get n � 2l, a contradition.
Thus, x and y are matched and xy ∈ M(G). Because �(Ĝ) � 2, Ĝ is Pn/2+1 or
the union of disjoint paths whose total length is n/2. Denote by e1 and e2 the
two edges of Cl which are adjacent to xy. It is clear that e1 and e2 satisfy lemma
3. Lemma 3 has been proved.

Let R
n/2+1
n be a graph in which only two adjacent vertices in Cn/2+1 are

attached by no edges and each of the others by a pendant edge. Obviously,
R

n/2+1
n satisfies lemma 3. For instance, R4

6, R̂
4
6, x, y, e1 and e2 are shown in

figure 2.

Lemma 4. For a given n (n � 6), when l > n/2, we have m(G, k) � m
(
R

n/2+1
n , k

)

with equality for all values of k if and only if G = R
n/2+1
n .

Proof. It is noted that

m(G, k) =
n/2∑

i=0

m(Ĝ, i) ·
(

n/2 − j

k − i

)

=
(

n/2
k

)
+ n

2
·
(

n/2 − 2
k − 1

)
+

n/2∑

i=2

m(Ĝ, i) ·
(

n/2 − j

k − i

)
. (26)

For any G ∈ Hl
n, the first and second term of the expansion in (26) are fixed.

Next, we consider m(G, k) for 2 � i � n/2.

(a) (b)

Figure 2. (a) R4
6 , (b) R̂4

6 .
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As stated in lemma 3, e1 and e2 are adjacent to 3 edges in M(G) and to at
most 2 edges in Q(G). So we divide all the i-matchings of Ĝ into two groups:
one containing e1 and e2 and the other not containing e1 or e2. The numbers
of i-matchings of Ĝ in the first and second group are denoted by m1(Ĝ, i) and
m2(Ĝ, i), respectively. Obviously, m1(Ĝ, i) + m2(Ĝ, i) = m(Ĝ, i). From lemma 3,
Ĝ is Pn/2+1 or the union of disjoint paths whose total length is n/2. Therefore,
m1(Ĝ, i) is the numbers of (i − 2)-matchings in Pn/2−3 or of the union of dis-
joint paths whose total length is at least n/2−4. Thus, m1(Ĝ, i) reaches its min-
imum when G = R

n/2+1
n . Since e1 and e2 are adjacent to 3 edges in M(G) and

the other (i − 2)-matchings of Ĝ to at most 2i − 4 edges in M(G), we have j �
2i − 1. When G = R

n/2+1
n , we have j = 2i − 1 since e1 and e2 are adjacent to 3

edges in M
(
R

n/2+1
n

)
and the other (i − 2)-matchings of R̂

n/2+1
n to exactly 2i − 4

edges in M
(
R

n/2+1
n

)
. For the second group, using the approach similar to that

for m1(Ĝ, i), we get that m2(Ĝ, i) reaches its minimum when G = R
n/2+1
n . Since

any i-matching of Ĝ is adjacent to at most 2i edges in M(G), we have j � 2i.
When G = R

n/2+1
n , we have j = 2i since any i-matching of R̂

n/2+1
n is adjacent to

exactly 2i edges in M(R
n/2+1
n ). Thus, we have

n/2∑

i=2

m(Ĝ, i) ·
(

n/2 − j

k − i

)

�
n/2∑

i=2

{
m1

(
Ĝ, i

) ·
(

n/2 − 2i + 1
k − i

)
+ m2(Ĝ, i) ·

(
n/2 − 2i

k − i

)}

�
n/2∑

i=2

{
m1

(
R̂n/2+1

n , i
) ·

(
n/2 − 2i + 1

k − i

)
+ m2

(
R̂n/2+1

n , i
) ·

(
n/2 − 2i

k − i

)}
(27)

with equalities if and only if G = R
n/2+1
n .

From (26) and (27), it follows that for all values of k,

m(G, k) � m(Rn/2+1
n , k) (28)

with equality if and only if G = R
n/2+1
n . Lemma 4 has been proved.

From lemma 4, we have theorem 2 as follows.

Theorem 2. For a given n (n � 6), when n/2 + 1 = 4h and l = 2r + 1 > n/2 or
l = 4j + 2 > n/2, we have E(G) > E(R

n/2+1
n ).

Proof. Case (i) n/2 + 1 = 4h and l = 2r + 1 > n/2.
Since b2k

(
R

n/2+1
n

)
= m

(
R

n/2+1
n , k

)
− 2m

(
R

n/2+1
n − Cn/2+1, k − 2h

)
and

R
n/2+1
n − Cn/2+1 is n/2 − 1 isolated vertices, we have
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b2k(R
n/2+1
n ) =

{
m(R

n/2+1
n , k) − 2, k = 2h

m(R
n/2+1
n , k), k �= 2h

. (29)

From b2k(G) = m(G, k) and lemma 4, it follows that

b2k(G) � b2k(R
n/2+1
n ). (30)

The equality in (30) does not hold for all values of k. For example, b4h(G) >

b4h(R
n/2+1
n ). It is noted that

b2k+1(G) = 2m(G − Cl, k − r) � 0 = b2k+1
(
Rn/2+1

n

)
. (31)

The equality in (31) does not hold for all values of k. For example, b2r+1(G) >

b2r+1(R
n/2+1
n ). It follows from (30) and (31) that E(G) > E(R

n/2+1
n ).

Case (ii) n/2 + 1 = 4h and l = 4j + 2 > n/2.
Since b2k(G) = m(G, k) + 2m(G − Cl, k − 2j − 1), by lemma 4, (29) and the

approach similar to Case (i), we have

b2k(G) � b2k

(
Rn/2+1

n

)
. (32)

The equality in (32) does not hold for all values of k. For example, b4j+2(G) >

b4j+2(R
n/2+1
n ). It is noted that

b2k+1(G) = b2k+1
(
Rn/2+1

n

) = 0. (33)

It follows from (32) and (33) that E(G) > E
(
R

n/2+1
n

)
.

By combining Cases (i) and (ii), theorem 2 is proved.

4. Conclusion

By comparing the absolute values of the coefficients of the characteristic
polynomials of graphs, the unicyclic Hückel molecular graph possessing Kekulé
structures with the minimal energy has been obtained for six cases which are
given in theorems 1 and 2. The other unsolved cases remain a mathematical task
for the future.
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